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Abstract: Brassica crops are vital as they supply essential minerals, antioxidants, and bioactive
substances like anthocyanins, glucosinolates, and carotenoids. However, biotic and abiotic elements
that cause oxidative stress through heavy metals and other eco-toxicants pose a risk to Brassica
plants. Increased generation of Reactive Oxygen Species (ROS) causes oxidative stress, which
damages biomolecules and interferes with plant growth, productivity, and cellular equilibrium.
Plants producing Brassica need an intricate enzyme defence mechanism to fend off oxidative stress.
All the enzymes that have been addressed are found in mitochondria, peroxisomes, chloroplasts, and
other cell components. They are in charge of removing ROS and preserving the cell’s redox balance.
Additionally, Brassica plants use secondary metabolites called Glucosinolates (GLs), which have
the capacity to regulate enzymatic activity and act as antioxidants. By breaking down compounds
like sulforaphane, GLs boost antioxidant enzymes and provide protection against oxidative stress.
To develop methods for improving agricultural crop stress tolerance and productivity in Brassica,
it is necessary to comprehend the dynamic interaction between GL metabolism and enzymatic
antioxidant systems. This highlights the possibility of maximizing antioxidant defences and raising
the nutritional and commercial value of Brassica across the globe by utilizing genetic diversity and
environmental interactions.
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1. Introduction

Brassica crops, such as B. oleracea, B. napus, and B. juncea, are fundamental to agriculture
worldwide. Because of their high nutritional value, being rich in essential minerals, an-
tioxidants, and bioactive compounds (e.g., carotenoids, glucosinolates and anthocyanins),
these crops support human health and ensure food security [1]. Thanks to the highly
diverse genetic pool of Brassica species, breeding efforts aimed at creating superior high-
yielding and climate-tolerant crop varieties have benefitted greatly, with relevant impacts
in agriculture, food production, and the global economy. Rapeseed-mustard is one of
India’s main oilseed crops, and Brassica crops are essential for oil extraction [2]. It was
estimated that 71.24 million metric tons of rapeseed will be produced globally, with the
major producers being the European Union, Canada, China, and India [3]. With an area
of 6.23 million hectares and a productivity of 1499 kg/ha, rapeseed-mustard accounts
for 28.6% of India’s total oilseed production [4]. It is mainly cultivated in the states of
Punjab, Rajasthan, Uttar Pradesh, and Madhya Pradesh. By 2030, the country is expected to
contribute 16.4–20.5 million metric tons of oilseeds, highlighting the necessity of increasing
rapeseed-mustard production to meet the growing demand [5].
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Oxidative stress in eukaryotic cells represents an imbalance between the production of
Reactive Oxygen Species (ROS) and the antioxidant defense system that can lead to cellular
damage and the potential onset of disease [6]. In Brassicaceae family (including Brassica
juncea and Cakile maritime), exposure to harmful trace metal elements, such as barium (Ba),
triggers oxidative stress reactions that activate antioxidant defense mechanisms, such as
guaicol peroxidase, ascorbate peroxidase (APX), and catalase (CAT) [7]. Additionally, some
species, to counteract the consequences of increased ROS generation, increase the produc-
tion of secondary metabolites such as flavonoids and total phenols, whereas others have a
two-celled structure that allows them to thrive in conditions with elevated Ba concentra-
tions [7]. These traits demonstrate how plants can use both enzymatic and non-enzymatic
ROS transformation pathways to control oxidative stress and prevent cellular damage; this
is particularly true in Brassica plants, including the most consumed cauliflowers, broccoli
and cabbages. Glucosinolates (GLs) are essential secondary metabolites found in Brassica
plants, and they are useful for controlling enzyme activity in response to oxidative stress.
GLs are phytochemicals that are known for their antioxidant qualities and doubled haploid
lines (DHLs). They are especially prevalent in B. rapa, which has high GLs content (HGSL)
and was intentionally developed from two edible subspecies of B. rapa: subsp. trilocularis
and B. rapa subsp. chinensis [5]. As chemicals, they offer defense against biotic stresses.
Through hydrolysis, GLs produce isothiocyanates, which have beneficial effects on antioxi-
dants as they activate cellular protection systems, lessen oxidative burden, and improve
mitochondrial efficiency and protein stability during muscle strain, thus reducing cellular
lesions during workouts [1]. Experimental work has shown that GLs like Sinigrin (SIN)
can change their content depending on the environmental stress, accumulating when the
plant is exposed to salt [8]. Additionally, it has been demonstrated that GL breakdown
products can affect cellular functions through decreased oxygen consumption, increased
ROS buildup, and fungal oxidative stress response gene regulation. Furthermore, the GL
derivative indole-3-carbinol has been found to protect against oxidative DNA damage by
activating the aryl hydrocarbon receptor (AhR) pathway, suggesting a new role for GLs
in oxidative stress defense mechanisms [9]. Therefore, GLs work in a multifaceted way in
controlling enzymatic reactions due to oxidative stress in Brassica plants, pointing to the
larger roles they play in defense and adaptation.

2. Oxidative Stress and Associated Enzymes

Oxidative stress is a condition that occurs when ROS are produced in overabundance,
or when the antioxidant defenses are impaired or over helmed. As a result, excess ROS
interact with cell macromolecules, damaging them. ROS are the highly reactive molecules
produced in plants cells, especially during abiotic stress. In plant cells, ROS can be gener-
ated in organelles, such as chloroplasts, mitochondria, and peroxisomes [10]. For instance,
chlorophyll, acting as a light-absorbing center, can lead to thr formation of 1O2 [11]. This
singlet oxygen may spread to other bodily cellular compartments, leading to harmful
effects. Additionally, the mitochondrial electron transport chain and nicotinamide ade-
nine dinucleotide phosphate (NADPH) oxidases produce superoxide, thereby increasing
the cell’s normal ROS burden. When atmospheric oxygen (O2) is in a stable triplet state
(3O2) with two unpaired electrons, ROS are produced [12]. This state limits its reactivity.
However, when energy is invested through biochemical reactions, such as electron car-
rier transport (Electron transport chain) or through exposure to physical stimuli like UV
light, 3 molecule O2 switches to a reactive excited state, 1O2 and O2•−. Some of the most
studied ROS include the superoxide anion (O2•−), hydrogen peroxide (H2O2), and the
hydroxyl radical (•OH) [13]. Each one has unique properties and reactivity. For instance,
O2•− can react with protons (H+) to form hydroperoxyl radicals (HO2•−), which are more
reactive and can easily permeate biological membranes. ROS not only act as damaging
agents but also as signalling molecules [14]. Through cellular signaling, they can influence
the oxidative stress regulation, the growth and the development of plant cells, as well as
their antioxidant defense mechanisms. Moreover, they can trigger numerous biological
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processes, such as stress adaptation or defense mechanisms. For instance, they control
redox signaling, activating the Mitogen-Activated Protein Kinase (MAPK) pathway and in-
creasing plant resistance to biotic and abiotic stressors [15]. The delicate interplay between
ROS generation and neutralization is a key challenge. ROS in plants are mostly detoxified
by non-enzymatic antioxidants, such as CAT and SOD. To prevent oxidative damage and
the consequent cell dysfunction and damage, this equilibrium is crucial [16].

Oxidative stress occurs when antioxidant defenses in biological systems fail to stabi-
lize tissue oxidative processes, resulting from the reduction of molecular oxygen to form
free radicals (oxidants), reactive metabolites with reducing potential, and other oxidiz-
able substrates [17]. It throws off the balance between the production of reactive oxygen
species, or free radicals, and antioxidant defenses [18]. In plants and other organisms,
reducing oxidative stress is largely dependent on enzymatic control. As a result of phys-
iological metabolism, ROS build up under biotic and abiotic stress conditions, causing
oxidative damage and eventual cell death [19]. This imbalance in redox equilibrium
damages biomolecules, including proteins, lipids, and nucleic acids [20]. It can result in
heritable DNA changes, alterations or elimination of cell characteristics, and modifica-
tions in membrane permeability and in catalytic activity [21]. Lastly, these changes impair
plant development and growth, lowering agricultural yield. In response to oxidative
stress, plants activate their enzymatic (such as CAT and SOD) and non-enzymatic (such
as carotenoids and phenolics) antioxidant systems to combat ROS, minimizing cellular
damage, protecting macro- and micromolecules, and averting cell death [22]. Therefore,
plants adapted to unfavourable environment conditions maintain an optimal rate of ROS
generation and detoxification.

This highlights the crucial role of antioxidant defence systems in protecting plants
against oxidative stress and ensuring health and productivity [23]. The enzymatic defence
mechanism against ROS includes enzymes like glutathione peroxidase, peroxidase, SOD,
polyphenol oxidase, APX, and CAT [24]. Some of these enzymes are used by plants to
overcome stress situations and to stabilize redox processes. Furthermore, oxidative stress
can directly alter the guanine-rich sequence in cancer-associated genes, with negative
consequences on gene stability and function. The base excision repair pathway regulates
gene expression through the OGG1, NEIL1-3, and APE1/REF1 enzymes [25]. Consequently,
this pathway can either increase or reduce gene expression according to the location and
conditions of the injury. Oxidative stress significantly affects Brassica plants by altering their
antioxidant defense systems and physiological reactions [26]. The antioxidants causing
oxidative burst, lipid peroxidation, and pigment content decrease in Brassica species are
harmed by heavy metal contamination, such as that caused by arsenic and chromium,
with detrimental effects on plant growth and development [27]. Additionally, the Ascorbic
Acid-Glutathione cycle is upset by hazardous trace metals, such as lead and arsenic, which
leads to oxidative stress and aberrant plant growth in Brassica [28]. In particular, a study
has demonstrated that exposing Brassica juncea seedlings to chromium-induced stress,
combined with rhizobacteria and earthworm applications, enhances the antioxidant defense
system, with a subsequent decrease in ROS levels and improved plant biomass [29].

As for Brassica plants, higher levels of glucosinolates improve their ability to combat
oxidative stress, which is an external environmental stress [30]. For instance, research has
shown that plants containing higher levels of glucosinolate are less prone to oxidative
stress in conditions of diseases or drought. Compared with their parent compounds, their
breakdown products must have a protective role. Studies in B. napus (rapeseed) and
B. oleracea (cabbage) revealed that when the GL level is high during stressful conditions,
antioxidant enzyme activity and ROS levels were also high [26].

3. Enzymatic Defence Mechanism to Prevent Oxidative Stress

Plant enzymatic defence systems play a key role in ROS management and in oxidative
tension decrease, thereby mitigating the effects of oxidative stress [30]. This antioxidant
defense system involves enzymes such as Superoxide dismutase (SOD), Catalase (CAT),
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Ascorbate peroxidase (APX), Glutathione reductase (GR), Monodehydroascorbate reductase
(MDHAR) and Dehydroascorbate reductase (DHAR), Glutathione peroxidase (GPX), and
Peroxidase (POX) [31]. Collectively, these enzymes regulate ROS levels in plant cells,
forming a network that enable cellular redox state maintenance under stress conditions [32]
(Figure 1).
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The various processes and conformations of enzymatic antioxidants make them crucial
for scavenging ROS. These enzymes, including Glutathione Peroxidase, Catalase, and SOD,
are pivotal in controlling the intracellular redox state and, consequently, in protecting cells
from oxidative damages. For instance:

• SOD: It neutralizes superoxide radicals (O2•−), a singlet oxygen, and splits it into
hydrogen peroxide (H2O2) and molecular oxygen (O2), depending on the presence of
metal cofactors, such as Mn, Cu, or Zn, in its active site [33].

• Catalase: It promotes the breakdown of hydrogen peroxide in water and oxygen,
which in turn decreases the amount of oxidative injury [34].

• Glutathione Peroxidase: It catalyzes the breakdown of hydrogen peroxide and organic
peroxide using glutathione as a substrate [35].

To protect plants from oxidative stress, the Asada–Halliwell pathway—also known as
the ascorbate-glutathione cycle—affects ROS regulation. Enzymes called APX and GR are
crucial for preserving redox equilibrium and providing protection under various stressors.
Therefore, evidence shows that the Asada–Halliwell pathway is active in B. juncea under
chromium (Cr) stress, enhancing the activities of antioxidative enzymes, including APX and
GR. These enzymes assist in oxidative stress decrease and in the enhancement of the plant’s
ability to withstand metal toxicity [36]. Each element in the process, including glutathione
and ascorbate, is crucial for controlling redox equilibrium. Under stress, cells accumulate
such antioxidants to support the development and the safeguarding of their functions.
For instance, increased APX and GR activities were observed responses to saline stress,
confirming the pathway’s adaptability [37]. Additionally, the Asada–Halliwell pathway
interacts with hormonal modulation, specifically abscisic acid (ABA) and jasmonic acid
(JA), to control stress in B. juncea plants. These hormones regulate pathogenesis-related
genes, showing a vast hormonal interplay in coordination with stress and antioxidant
genes [38].

3.1. Superoxide Dismutase (SOD)

SOD is located in plant cells, where it helps to avoid oxidative damage and ensure the
overall health and longevity of the plant. It is an essential enzyme that protects Brassica
species from oxidative stress by removing ROS in adverse environments [39,40]. In plant
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cells, SODs serve as the main defence against ROS [41]. SODs are present in various com-
partments in plant cells, including the peroxisomes, mitochondria, and chloroplast, being
the organelles involved in ROS generation [42]. By converting ROS into oxygen, hydrogen
peroxide, or other non-destructive molecules, they mitigate possible dangers [43]. SOD has
a crucial role in maintaining the balance between ROS production and removal, particularly
during stressful situations when ROS levels rise [44]. Their genetic makeup and subcellular
location dictate SOD’s specialized function, allowing efficient ROS detoxification across
different cellular compartments [45]. Research has demonstrated that when sodium nitro-
prusside, a nitric oxide donor, is applied to B. juncea, it significantly improves the activity
of antioxidative enzymes such as SOD, catalase, and peroxidase, improving salt tolerance
and lowering oxidative damage caused by NaCl stress [46]. Genome-wide investigations
in B. rapa and B. junce have identified SOD genes that react to abiotic stressors, such as
heat, salinity, and drought, providing resistance mechanisms against these stresses [47].
Additionally, it has been shown that nitric oxide and antioxidants like SOD work together
to reduce the oxidative stress brought on by NaCl, increasing the salt stress tolerance in
B. juncea plants [48]. Furthermore, the application of 28-homobrassinolide before seeding
boosts SOD and other antioxidant enzymes, hence lowering the oxidative stress caused by
the high temperatures in B. juncea [49].

3.2. Catalase (CAT)

Catalases, core ROS-associated proteins, first appeared around 2.5 billion years ago
and played a key role in the Great Oxidation Event [50]. CAT is essential for preventing
oxidative stress in Brassica species by converting H2O2 into H2O [51]. This process reduces
the ROS buildup, which could otherwise limit the growth and development of plants. Con-
sequently, CAT enzymes promote the maintainance of cellular and organismal homeostasis
by converting H2O2 into oxygen and water. This process decreases the level of oxidative
injury and allows the growth and survival of plants under more severe conditions [52]. Re-
cent studies have revealed that the rapeseed CAT gene family consists of 14 genes, and the
exposure to various stresses, such as cold, salt, and hormone stress, significantly increases
the expression of some of these genes [53]. Furthermore, in non-heading Chinese cabbage,
overexpression of the BcWRKY22 gene increases CAT enzyme activity and improves ther-
motolerance, thereby reducing H2O2 buildup and confirming the direct link between CAT
and boosting plant heat stress tolerance [54]. The importance of CAT in lowering oxidative
damage under stress was also demonstrated by the application of β-aminobutyric acid
(BABA) to B. napus under drought stress, which decreased lipid peroxidation, enhanced
non-enzymatic antioxidants, and decreased H2O2 levels [55]. Additionally, B. juncea plants
treated with 28-homobrassinolide prior to planting showed enhanced development under
extreme temperature stress, reduced oxidative stress, and elevated CAT activity, all of
which helped to maintain antioxidant capacity [56]. Brassicaceae and monocots have been
shown to contain specific amino acid residues such as Cys-343 and Thr-343, which affect
the functional variety of CAT genes in these plant families [57]. The influence of important
amino acid residues on the catalytic capabilities and structural features of CAT proteins was
determined using structural predictions and sequence alignments [58]. The significance of
essential amino acids in regulating the CAT genes’ activities in various plant species was
supported by the presence of conserved motifs and specific residues to individual plant
species [59].

3.3. Ascorbate Peroxidase (APX)

To fight oxidative stress, or ROS, plant cells use both enzymatic and non-enzymatic
substances, such as ascorbate and glutathione [60]. APX reduces oxidative stress by scav-
enging ROS in plants, including H2O2 [61]. APX reduces the levels of harmful ROS in plant
cells by employing reduced ascorbate as an electron donor to convert H2O2 into water [62].
Different gene families in plants express distinct APX isoforms based on the subcellular
compartment in which they are located [63]. There can be several isoforms of APX depend-
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ing on the site where they exist, and these include Cytosolic APX, Mitochondrial APX,
Chloroplast APX, and Peroxisomal APX [64]. By regulating the amount of ROS in cells
and organelles, these isoforms protect plants from stressors and promote their growth [65].
The subcellular location of the plant APX isoenzyme is determined by the presence of
transmembrane domains and organelle-specific targeting peptides [66]. Maintaining appro-
priate ascorbate levels is crucial for effective ROS elimination, since the APX isoenzymes
contain bound ascorbate, and the increase of this antioxidant has been shown to change the
stability and activity of these enzymes [67]. Beyond its conventional role as an ascorbate
peroxidase, APX has also been demonstrated to have greater substrate selectivity and chap-
erone activity, hence augmenting its participation in a variety of biological processes [68].
Brassica APX genes, such as BnaAPX and BrAPX, are differently expressed under diverse
conditions of stress, including heat, salt, drought, and cold, implying that these genes are
very important as part of stress reactions [69]. According to research, B. juncea tolerance to
salt stress is increased when APX genes are overexpressed because this increases the antiox-
idative defense mechanisms [70]. Additionally, added exogenous ascorbate (AsA) would
improve the AsA–GSH–NADPH cycle’s ability to reduce ROS generation and strengthen
the antioxidant defense system when Brassica napus is under Cd stress [71].

3.4. Glutathione Reductase (GR)

GR has a special role in mitigating oxidative stress in Brassica species via managing
the antioxidant protection and oxidative status [72]. GR, an enzyme well known for its
ability to neutralize oxidative stress and preserve cellular redox balance, is essential to
Brassica’s antioxidant defense system [15]. GR genes (BcGR1.1, BcGR1.2, BcGR2.1, and
BcGR2.2) are expressed in a range of tissues and are triggered by abiotic stressors such
as cold, high temperatures, drought, salt stress, and Cd exposure, which raise GR gene
expression and enzyme activity, according to research on Brassica species, including Brassica
campestris and Brassica napus [57,73]. It has been demonstrated that overexpressing Brassica
rapa, GR, in yeast and E. coli systems enhances cellular glutathione homeostasis, increases
the activity of antioxidant enzymes, and increases resistance to oxidative stressors like
exposure to H2O2 [74]. Furthermore, it was discovered that arsenic-induced stress signifi-
cantly increased GR activity in Indian mustard (B. juncea), demonstrating the importance
of the Ascorbate-Glutathione pathways in protecting against harmful compounds [75].
Glutathione (GSH), a GR substrate, can be applied exogenously to improve redox control
and antioxidant defences against oxidative damage brought on by stressors such as Cd [76].
Furthermore, Saccharomyces cerevisiae that have overexpressed GR have an improved cel-
lular redox equilibrium, which increases tolerance to oxidative stress brought on by a
variety of stressors, including heat shock, heavy metals, and H2O2 [77]. In conclusion, by
controlling redox balance and antioxidant systems, GR and its relationship with GSH are
important in shielding Brassica plants from oxidative stress.

3.5. Monodehydroascorbate Reductase (MDHAR)

MDHAR impacts Brassica’s antioxidant defense by providing cytosol-specific isoforms,
crucial for ascorbate recycling, a process essential for antioxidant function in Brassicaceae
plants [78]. Due to its role in the regeneration of ascorbate, a vital antioxidant molecule,
MDHAR is an essential component of Brassica plants’ antioxidant defense system [79]. In
Brassica species, studies show that MDHAR can reduce oxidative damage brought on by
heavy metals, including Pb and Cd [80]. In response to Cd stress in Brassica plants, MDHAR
accumulates concurrently with other antioxidant enzymes, reducing oxidative damage
and improving growth character, as was well-substantiated in many investigations [71].
Monodehydroascorbate Reductase activity decreased in all Brassica species under Cd stress
with the exception of B. juncea, indicating that it serves as an antioxidant defense against
oxidative stress [81]. MDHAR activity decreases under Cd stress, although Brassica’s antiox-
idant defense mechanism is bolstered when hydrogen peroxide is provided beforehand [71].
Additionally, mustard plants under Pb stress exhibit increased MDHAR activity when
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salicylic acid (SA) is added, strengthening the plants’ antioxidant defenses and fostering
better growth [82]. Additionally, exogenous EDTA delivery to mustard seedlings under Cd
stress enhances the components of the AsA-GSH cycle, especially MDHAR, which reduces
oxidative damage and promotes development by limiting Cd uptake and increasing the
concentration of nonprotein thiols [83]. It has also been shown that MDHAR is involved in
maintaining the pool of reduced ascorbate at its optimum level, in recycling the oxidized
ascorbate, and in regulating the redox balance to scavenge the ROS when the cells are
exposed to various stress agents [84]. Research has demonstrated that MDHAR genes
are essential elements of the antioxidant defence system, supporting the improvement of
antioxidant scavenging systems and the plants’ overall ability to withstand stress in Brassica
varieties [85]. Brassica rapa’s increased resistance to freezing stress has been associated with
the expression of MDHAR genes, and co-expression of MDHAR and DHAR genes has
been shown to boost stress tolerance mechanisms [86].

3.6. Dehydroascorbate Reductase (DHAR)

Dehydroascorbate reductase, or DHAR, is an important enzyme that helps cells re-
generate ascorbate (AsA), which lowers oxidative stress in cells [87]. Excessive DHAR
synthesis raises the pace at which AsA regenerates and initiates the Ascorbate-Glutathione
Cycle, which scavenges ROS in the presence of intense light [88]. In Brassica plants, DHAR
is an essential component of defense systems against environmental stressors, especially
heavy metal toxicity, such as Cd [89].

Through the regeneration of ascorbate, a vital antioxidant, DHAR effectively pre-
serves plants’ capacity to neutralize ROS [90]. By lowering oxidative damage, it improves
B. juncea’s antioxidative defenses under zinc stress [91]. When subjected to Cd stress,
B. juncea, a plant that is relatively resistant to Cd toxicity, exhibits a sharp increase in
DHAR activity [92]. Together with GR and MDHAR, this strengthens antioxidant defense
systems [93]. DHAR’s role in linking the ascorbate and glutathione pools with H2O2
metabolism is crucial for plant defense, growth, and development [94]. This underlines
DHAR role in decreasing the oxidative damage and enhancing resistance to the stress
factors in Brassica species.

3.7. Glutathione Peroxidase (GPX)

GPX plays a key role in Brassica defense mechanisms against various stressors. Ac-
cording to research done on rapeseed, the GPX genes are crucial for regulating stress, ROS,
and antioxidant processes [95]. Additionally, the role of glutathione in controlling the
miRNA synthesis during pathogen attack is demonstrated using the model plant Arabidop-
sis thaliana. Alternaria brassicicola targets defense-related genes, kinases, and transcription
factors, which in turn improve resistance to infection [96]. Higher levels of GSH were
found to confer resistance against necrotrophic infections. Additionally, fungal infections in
winter oilseed had a substantial impact on GPX activity [97]. Alternaria brassicicola was the
source of the largest increase in GPX activity, indicating the importance of GPX in defense
responses. Furthermore, Brassica species can enhance GPX in response to selenium (Se)
exposure, including stress tolerance and Se-dependent GPX activity, which is advantageous
for phytoremediation applications [98]. Because it promotes antioxidant defense, stress
response, and detoxification pathways, GPX is crucial for Brassica defense against heavy
metal stress and pathogen incursions [99].

4. Glucosinolates in Brassica spp.

Glucosinolates (GLs), which are prevalent in Brassica vegetables, have several health
benefits. They are substances that contain nitrogen and sulfur. It has also been demon-
strated that they have certain health benefits, such as the ability to prevent the development
of cancer by preventing the production of metabolites [100]. Key enzymes like sulfo-
transferases catalyze a sequence of reactions that change amino acids, which can start the
manufacture of GSLs [101]. The structure of the glucosinolate consists of a β-thioglucose
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moiety, a sulfonated oxime moiety, and a variable aglycone side chain derived from a
α-amino acid (Figure 2).
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In Brassica rapa, 102 putative GLs biosynthetic genes were identified, showing high
co-linearity with Arabidopsis, indicating conserved pathways [102]. The last stages of GLs
biosynthesis include the addition of sulphate groups, which are important in the formation
of the active compounds [103]. In silico research, which forecasts interactions with antioxi-
dant enzymes, indicates that they possess antioxidant properties. These compounds are
also found in Brassica oilseeds, where they improve flavor. However, because excessive
levels of these molecules might be dangerous, they must be eliminated [104]. Although
agronomic and environmental factors can cause significant variations in concentrations,
with some compounds showing differences of up to 556 times, genetic factors are the
primary determinants of the glucosinolate profiles of Brassica crops [105]. Furthermore,
the amount of glucosinolate varies depending on the type of Brassica and how it is pre-
pared for ingestion, which always reduces the plant’s potential to promote health. Some
recent studies have examined the potential health advantages of glucosinolates, which are
thought to be beneficial after demonstrating the chemicals’ capacity to shield cells from
oxidative stress [73] (Figure 3). A higher glucosinolate content in Brassica spp. has been
associated with improved resistance to oxidative stress brought on by external stimuli. For
instance, research indicates that plants with higher glucosinolate levels are more resilient
to oxidative damage during periods of drought or pathogen-induced stress [16]. This is
probably because their breakdown products have a protective function.
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Brassica plants can generate glucosinolates as a secondary metabolic reaction to ox-
idative stress. By lowering ROS accumulation and triggering oxidative stress response
pathways, including the Nuclear Factor erythroid 2-related factor 2 (Nrf2) and the Antioxi-
dant Response Element (ARE) pathway, these chemicals activate the plant’s stress defense
mechanisms through their breakdown products. By increasing antioxidant enzyme activity,
decreasing reactive oxygen species, and modifying oxidative stress response pathways
in Brassica plants and animals that eat them, GL breakdown products like sulforaphane
aid in the reduction of oxidative stress [106]. Metabolites obtained by the hydrolysis of
consumed GLs possess antibacterial, anti-inflammatory, and anticarcinogenic effects. GL
breakdown products have been related to upregulating the Nrf2 protein, which has neu-
roprotective effects and holds promise in treating diabetes, cancer, and cardiovascular
illnesses, as sulforaphane (SFN) has nutraceutical properties as well. Furthermore, by
causing apoptosis, generating ROS, and blocking signaling cascades like NF-κB and ERK
(Extracellular Signal-Regulated Kinase) in colorectal carcinoma cells, B. rapa with high GL
has demonstrated cancer-preventive properties [107]. Considering all of the facts, it is
evident that eating foods high in GL has several health benefits, placing them in a category
for active and preventive nutrition [108]. In particular, there is a need to better understand
the genetic and environmental factors affecting glucosinolates in Brassica plants to develop
higher value products with enhanced pharmacological activity [39].

5. Pattern of Activity of Glucosinolates to Regulate Enzymatic Activity

Glucosinolates, as a class of secondary metabolites found in Brassica, are crucial for
controlling the activity of enzymes. Research indicates that glucosinolates are hydrolyzed
by the natural enzyme myrosinase to produce a range of compounds, including isothio-
cyanates that are beneficial to health [109]. Broccoli and cabbage contain Glucosinolates,
which give these vegetables their unique tastes and health benefits [110]. They also promote
the ability of plants to defend themselves. In addition, myrosinase-catalyzed enzymatic
reactions are essential for the formation of glucosinolate derivatives as products with anti-
inflammatory and anti-cancer properties [111]. Understanding glucosinolate metabolism
is crucial to maximizing the health benefits of consuming Brassica vegetables because a
number of variables, such as growing conditions, cabbage morphotype, and accession, may
impact the bioavailability of these advantageous compounds [112].

When the branched-chain aminotransferase 4 (BCAT4) catalyzes the conversion of
methionine to its corresponding 2-oxo acid, 4-(methylsulfanyl)–2–oxobutanoate, the chain
elongation cycle begins. Isopropylmalate dehydrogenase (IPMDH), isopropylmalate iso-
merase (IPMI), and methylthioalkylmalate synthase (MAMS) mediate a series of processes
that lengthen the aliphatic chain by one methylene group. BCAT3 has the ability to either
transaminate the extended 2-oxo to the proper amino acid or reenter the Chain Elongation
Cycle (Figure 4).
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Members of the CYP79 cytochrome P450 family may convert a range of amino acids
(i.e., variable R-group), including extended aliphatic methionine-derived compounds
(Figure 5), to aldoximes, which can then be used to start building the core glucosinolate
scaffold. The unstable aci-nitro compounds produced by members of the CYP83 family
are thought to serve as the substrate for glutathione-S-transferases, which are responsible
for introducing the shared sulfur atom. The S-alkyl-thiohydroximate is changed into
thiohydroximic acid by the SUR1 cysteine-sulfur lyase. Finally, UDP-glucosyltransferase
(UGT) family 74 enzymes are used to attach a glucosyl residue to the modified acid. The
final step is catalysis by PAPS-dependent sulphotransferases (SOT) in sulfation. The
molecular variety of glucosinolates is the result of subsequent alteration reactions of the
basic structure.
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Because they alter antioxidant enzymes through the Keap1-Nrf2-ARE pathway, glu-
cosesinolates are significant. Heme Oxygenase-1 (HO-1), Glutamate-Cysteine Ligase Cat-
alytic subunit (GCLC), Glutathione S transferases (GSTs), and NAD(P)H quinone reductase
(NQO1) are further examples of these enzymes [113]. The ability of these bioactive com-
pounds, especially the hydrolysis products of aliphatic isothiocyanate glucosinolate, to
repel a range of biotic threats and exhibit chemopreventive properties in mammalian
systems—including the ability to prevent cancer by controlling antioxidant enzymes—is
well known [114]. In addition, MYB and basic helix-loop-helix factors interact in rather com-
plex transcriptional networks that control the biosynthesis of glucosinolates [115]. These
factors work in concert with phytohormones, such as Jasmonate, to allow coordinated and
rapid control of glucosinolate genes [116]. The intricate relationships among transcrip-
tional regulation, enzymatic activity, and glucosinolates in plant defense (Figure 6) and
the potential benefits to human health are illustrated by these techniques. GSLs regulate
the activity of several enzymes involved in various biological processes and are found in
Brassica species. Recent studies reveal candidate genes associated with GSL biosynthesis,
including BnaMAM1, BnaGGP1, BnaSUR1, BnaMYB51, BnaMYB44, BnaERF025, BnaE2FC,
BnaNAC102, and BnaDREB1D, that act as regulators of enzyme activity [117]. Additionally,
GSLs have shown that they can alter enzyme activity in Brassica species to provide a variety
of physiological advantages, such as resistance to pests and diseases, as well as allelopathic
and anticarcinogenic qualities [118]. It draws attention to the intricate relationship between
GSLs and the regulation of enzymes in Brassica crops, showing how genetic and environ-
mental variables determine the variance in GSL content in Brassica, which ultimately affects
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enzyme activity and health-promoting properties [119]. Temperature, light, infections, and
other environmental stimuli cause different chemicals to be produced, which in turn affects
GSL biosynthesis and gene expression [120]. Thus, through eATP (Extracellular ATP), the
indolic glucosinolate pathway is induced upon an attack from pathogens or herbivores to
enhance plant defence against a wide range of pathogens or herbivores [121]. Additionally,
glucosinolates degrade myrosinases to produce toxic substances that shield the plant from
diseases and create a defense mechanism between glucosinolates and myrosinase [122].
Additionally, Nitrile-Specifier Proteins (NSPs) and Epithiospecifier Proteins (ESPs) in cer-
tain plants, such as cabbage, aid in rerouting glucosinolate hydrolysis (Figure 6), providing
plants with an extremely powerful defense mechanism against pests [123].
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6. Regulation of Enzymatic Activity in Response to Oxidative Stress

Heme oxygenase 1 (HO-1), glutathione S transferases (GSTs), and NAD(P)H quinone
reductase (NQO1) are examples of Nrf2 signaling pathway enzymes that play crucial roles
in shielding cells from oxidative stress. Furthermore, it has been discovered that isothio-
cyanates bind to regulators of oxidative stress responses in fungal cells, potentially having
physiological importance. This finding may have implications for adaptation to a variety
of stressors [124,125]. Nevertheless, such compounds enhance antioxidant defenses nor-
mally, but could be damaging through oxidation in certain circumstances, such as through
phase-I enzymes, thus implying heightened carcinogenic potential in some circumstances.
Therefore, the degradative products of glucosinolates are capable of both antioxidant and
pro-oxidative effects and modulate oxidant-antioxidant balance at the cellular level, always
in the biological systems. Enzymes are subjected to regulation mechanisms to facilitate
their adaptation to oxidative stress and maintain integrity within the cells. The enzymes
influenced by oxidative stress are nucleoside diphosphatases (NDPases), aldehyde dehy-
drogenases (ALDHs), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) [126].
Sulfhydryl group reactions, for instance, control GAPDH and alter the protein’s enzymatic
function and non-glycolytic activity in both reversible and irreversible ways [127]. The
selective inhibition of ALDHs in response to oxidative stress reroutes the carbon supply to
fulfill the demands of the cell [128]. The glycosylation of proteins may also be affected by
ROS’s effect on NDPases. NDPases are used to mature glycoproteins [40]. These outcomes
elucidate the multiple regulatory mechanisms that enzymes utilise to down-regulate oxida-
tive stress and sustain biological functions. Therefore, enzymes such as CAT, SOD, POX,
GPX, and others constitute a complex antioxidant defence to eliminate ROS efficiently and
to decrease oxidative stress.
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7. Conclusions

Brassica species, including B. oleracea, B. napus, and B. juncea, are essential to agriculture
and human nutrition. They are rich in minerals, antioxidants, and bioactive substances
that are essential for maintaining good health and a balanced diet. However, oxidative
damages resulting from abiotic factors, such as environmental stress and heavy metals,
poses a risk to these crops. Oxidative stress causes cellular damage and reduces agricultural
yield in Brassica plants by upsetting the balance between antioxidant defense processes
and ROS production. Brassica species have a well-coordinated enzymatic defence system
that involves GR, SOD, CAT, APX, MDHAR, DHAR, and GPX. These enzymes neutral-
ize ROS. Redox equilibrium is essential for plant growth and development under stress.
Glucosinolates, which are compounds found mainly in Brassicaceae, have a multifaceted
function in decreasing oxidative stress in plants through their ability to act as antioxidants.
When plant tissue is damaged, glucosinolates are decomposed into bioactive chemicals,
like isothiocyanates, which can directly neutralize free radicals and stimulate antioxidant
protection in plant cells. It improves the plant’s defense against oxidative damaging agents
through the use of antioxidant pathways, including Keap1-Nrf2-ARE. It is necessary to have
a basic grasp on how GLs and the associated enzyme defense system vary in the genetic
background and in reaction to environmental conditions in order to create new Brassica
genotypes with improved stress tolerance and nutritional value. The primary goal of future
research should be to maximize these natural defenses to guarantee sustainable agriculture.
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